Modeling the Temperature Dependence of Dynamic Mechanical Properties and Visco-Elastic Behavior of Thermoplastic Polyurethane Using Artificial Neural Network
نویسندگان
چکیده
This paper presents one of the soft computing methods, specifically the artificial neural network technique, that has been used to model the temperature dependence of dynamic mechanical properties and visco-elastic behavior of widely exploited thermoplastic polyurethane over the wide range of temperatures. It is very complex and commonly a highly non-linear problem with no easy analytical methods to predict them directly and accurately in practice. Variations of the storage modulus, loss modulus, and the damping factor with temperature were obtained from the dynamic mechanical analysis tests across transition temperatures at constant single frequency of dynamic mechanical loading. Based on dynamic mechanical analysis experiments, temperature dependent values of both dynamic moduli and damping factor were calculated by three models of well-trained multi-layer feed-forward back-propagation artificial neural network. The excellent agreement between the modeled and experimental data has been found over the entire investigated temperature interval, including all of the observed relaxation transitions. The multi-layer feed-forward back-propagation artificial neural network has been confirmed to be a very effective artificial intelligence tool for the modeling of dynamic mechanical properties and for the prediction of visco-elastic behavior of tested thermoplastic polyurethane in the whole temperature range of its service life.
منابع مشابه
Analysis of Motion of Micro-Gripper Exposed to the Electric Field and Thermal Stresses for Using in Micro-Robotics
Micro system technology is a relatively new scientific research that deals with the development and study of properties of materials in micro dimensions. Micro-grippers are widely used in switching, positioning, and assembling micron sized components in micro-robotics. In this study, the static and dynamic behavior of visco-elastic Micro-Tweezers under the thermal and electrostatic field is...
متن کاملDynamic Analysis of Multi-Directional Functionally Graded Panels and Comparative Modeling by ANN
In this paper dynamic analysis of multi-directional functionally graded panel is studied using a semi-analytical numerical method entitled the state-space based differential method (SSDQM) and comparative behavior modeling by artificial neural network (ANN) for different parameters. A semi-analytical approach which makes use the three-dimensional elastic theory and assuming the material propert...
متن کاملModeling & Comparison of Mechanical Behavior of Foam Filled & Hollow Aluminum Tubes by LS-DYNA & Introducing a Neural Network Model
Energy absorption capability of thin-walled structures with various cross sections has been considered by researchers up to now. These structures as energy absorbers are used widely in different industries such as automotive and aerospace and protect passengers and goods against impact. In this paper, mechanical behavior of thin-walled aluminum tubes with and without polyurethane foam filler su...
متن کاملPrediction of Mechanical Properties of TWIP Steels using Artificial Neural Network Modeling
In recent years, great attention has been paid to the development of high manganese austenitic TWIP steels exhibiting high tensile strength and exceptional total elongation. Due to low stacking fault energy (SFE), cross slip becomes more difficult in these steels and mechanical twinning is then the favored deformation mode besides dislocation gliding. Chemical composition along with processing ...
متن کاملDistillation Column Identification Using Artificial Neural Network
 Abstract: In this paper, Artificial Neural Network (ANN) was used for modeling the nonlinear structure of a debutanizer column in a refinery gas process plant. The actual input-output data of the system were measured in order to be used for system identification based on root mean square error (RMSE) minimization approach. It was shown that the designed recurrent neural network is able to pr...
متن کامل